





# EaP Green RECP Demonstration Component

# Responsible Production Seminar Minsk , Belarus , 14 July 2016

DI Aida Szilagyi Sustainability Expert Chair of NCSPC Romania













## **Objectives of the session**

- Presentation of chemicals use and the associated concerns at the global and business level
- Introduce the UNEP's Responsible Production approach
- Presentation of the 5-step model and the tools available in the Responsible Production Toolkit
- Case study on the implementation of Responsible Production in Romania





## Chemicals, a global concern

- Between 2000 and 2009, the chemicals production increased by 54%, while the sales have doubled
- Large amounts of chemical waste continue to be generated such as waste contaminated with pesticides, heavy metals, other disposing industrial chemicals, creating pollution of air, water and soil
- 40% of chemicals supplied by companies are going unused and directly become hazardous waste
- Many industrial accidents are caused by inadequate management of chemicals (Global Chemicals Outlook, UNEP, 2013)
- Approximately 2.3 million fatalities per year due to work related accidents and diseases → approximately 400,000 deaths annually caused by exposure to chemicals
   (ILO)









# International agreements and regulations on chemicals

GHS (United Nations Globally Harmonised System of Classification and Labelling of Chemicals)

Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal Rotterdam Convention on the Prior Informed Consent (PIC) Procedure for Certain Hazardous Chemicals and Pesticides

Stockholm Convention on Persistent Organic Pollutants Montreal Protocol on Substances that Deplete the Ozone Layer

Minamata Convention on Mercury









## **Regional legislations on chemicals**

| EU REACH (Regulation      |
|---------------------------|
| on the Registration,      |
| Evaluation,               |
| Authorisation and         |
| Restriction of Chemicals) |

EU CLP (Classification, labelling and Packaging) based on GHS Seveso Directives on major accidents prevention

EU Industrial Emissions Directive sets out the main principles for the permitting and control of installations

US Toxic Substances Control Act (TSCA)







## Business concerns related to chemicals use

## Cost to business

- Chemicals are expensive, and so is disposal of chemical waste
- Proper use of right chemicals can boost efficiency and productivity
- Risk to business
  - Business risks of chemical accidents
  - Liability for chemical waste
  - Additional legal compliance required
- Impacts on human health and environment
  - Exposure to toxic chemicals causes risks for employees and communities
  - Chemicals released into the air, water or soil act as pollutants and have adverse effects on climate, potable water or land use







## Challenges on the use of chemicals

- Limited awareness
  - Chemicals and their risks, in particular cumulative risks
  - Impacts of behaviour and process conditions on hazards, and severity and frequency incident scenarios
- Lack of knowledge and resources
  - Specific knowledge on chemicals and risk management
  - Safe substitutes and technologies
- Lack of infrastructure
  - Environmentally sound management, recycling and disposal of chemical wastes









## **UNEP's Responsible Production approach**

A systematic and continuous improvement approach - practical guidance and tools - for assisting SMEs in **identifying** and **understanding the hazards and risks** related to **chemicals, company products** as well as **operations on-site** and **along the value-chain** 



Partnership for Environment and Growth





# Responsible Production Aims and Rationale

- Need to foster chemical risk control, safe work practices and chemical safety information along the industry value chain, (involving not only the producers but also their suppliers, transporters, end customers, and other relevant business partners)
- An integrated approach to chemicals safety and chemical product stewardship can not be implemented without the identification and engagement of the relevant stakeholders along the value chain

Chemical product stewardship "...the practice of making health, safety and environmental protection an integral part of the life cycle of chemical products."



Partnership for Environment and Growth





**Elements of Responsible Production** 



10





# Who is interested in Responsible Production?

Producers ad suppliers of chemicals as they need to provide the required information

SMEs with less resources but with thee need to control their chemical risk Local authorities and government officials interested to ensure and enforce responsible chemical hazard management Large companies that need to ensure that smaller organisations are managing chemical hazards safely and responsibly

### EXPERTS







# Responsible Production A focus on SMEs

- SMEs are the backbone of the industrial sectors where hazardous chemicals are manufactured, transported, repackaged and used
- SMEs needs for a systematic and effective approach to improve chemical safety measures
- SMEs can benefit from an integrated guidance on safer production and safer chemicals handling



Partnership for Environment and Growt

WWW UNIDO ORG





## **Benefits of Responsible Production for SMEs**









14

## The 5-step model of the **Responsible Production Framework**



UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION











1966 - 2016 —

## Step 1: Identify Responsible Production Issues





UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION





# Step 2: Get the Right People Involved









## Step 3: Develop your Plan



DEVELOP CHEMICAL CONTROL ACTION PLAN. IDENTIFY ACTIONS, UNDERSTAND THE COSTS AND TRAINING PLAN, AND EMERGENCIES PLAN SET CHEMICAL OBJECTIVES, TARGETS AND INDICATORS **IDENTIFY ACTIONS FOR RISK REDUCTION** CHEMICAL COST ANALYSIS TRAINING **EMERGENCIES** CONTROL PLAN PLAN ACTION PLANS SETTING GOALS, OBJECTIVES, TARGETS, AND INDICATORS



WWW.UNIDO.ORG





## Step 4: Put Plan into Practice, Train and Communicate









1966 - 2016 ----

## Step 5: Evaluate How Well you Did









1966 - 2016 🗕

# **Responsible Production materials and tools**

- Framework Booklet
  - Overall background, technical approach and business case for implementation
  - Indicators , case studies and lessons learned

### • Toolkit

- Core technical materials for operationalizing the framework
- Includes basic and advanced tools
- Training Package
  - Adaptable base for capacity building
  - 18 thematic training sessions to aid SMEs in implementation
  - Includes guidance for trainers and adaptable presentations
- Learners and Trainers Companion
  - Software based package to support capacity building
- Web portal: www.unep.org/responsibleproduction











## **Section 1: Identify Responsible Production Issues**



**LaP**G



UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION





## Step 1 Understand the process flow

• Define the boundaries of the process

## Where does the process start? (supplier, purchasing)

- >trace where your raw materials come from
- what they are
- how they get to your business

## Where does the process ends? (customer, sales, waste company)

- Decide the level of detail
- List all processes and activities
- Describe sequence of activities
- Review of flowchart with relevant stakeholders (eg., workers and supervisors, suppliers, customers,...)







1



966 - 2016

WWW.UNIDO.ORG

# 1.2 Identify chemicals, quantities and hazards involved in the process

Main questions:

- Use of Chemicals
  - What types and quantities of chemicals are in use? Where are chemicals used and for what purpose?
- Identification of hazards associated with chemical products
- Identification of hazards associated with activities such as potential for a fire or an explosion –
- .. information is explained in Material Safety Data Sheets (MSDS);
- Mark hazards on flow-chart





hazard

**1.2** Chemical inventory and

Tool

classification



1966 - 2016 -

## Example: Mark hazards on the flow chart



EaPGRE

Partnership for Environment and Growth

Sonya Bauer, 2015 Hazard Management

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION



1



1966 - 2016 -

# Step 1:Review existing information on chemicals stored and used at site

| Input data                                                                                                                                                               | Output data                                                                                                                                                                                                                                                         | Point of use                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Data from suppliers</li> <li>Internet based data</li> <li>Safety data sheets</li> <li>Accounting<br/>documents</li> <li>Internal storage<br/>records</li> </ul> | <ul> <li>Hazardous waste<br/>transport sheets</li> <li>Internal records</li> <li>Records from disposal<br/>companies (weight<br/>sheets and invoices)</li> <li>Monthly and annual<br/>production data</li> <li>Air, water and land<br/>chemical analysis</li> </ul> | <ul> <li>Internal records</li> <li>Online recording of<br/>chemical use</li> <li>Online recording of<br/>chemicals outputs<br/>(pollutants in the air,<br/>water and soil)</li> </ul> |





hazard

Chemical inventory and

1.2

Tool



966 - 2016

# Chemicals / waste inventory

What kind of data is need?

## **Overview chemical input**

- Types of chemicals and composition
- Classification
- Place of use / storage
- Maximum stored quantities
- Date of supply
- Expiration date
- MSDS availability

### CHEMICALS INVENTORY

## **Overview chemical output**

- Types of chemical waste
- Source / storage
- Monthly /yearly quantities
- Disposal and cost
- Maximum stored quantiles

### **CHEMICAL WASTE INVENTORY**







- 1966 - 2016 ----

## **Example: Chemicals inventory**

| No. | SDS <sup>1</sup> . | Product name                               | Use             | Hazardous<br>ingredient(s)                         | Classification<br>according to<br>GHS | Container<br>volume           | Maximum<br>of quantity<br>stored | Storage<br>area |
|-----|--------------------|--------------------------------------------|-----------------|----------------------------------------------------|---------------------------------------|-------------------------------|----------------------------------|-----------------|
| 1   | ~                  | Hydrochloric acid<br>T.S. 30               | Cleaning agent  | Hydrogen chloride                                  | С                                     | 200 l barrel                  | 800 I                            | GL1             |
| 2   | ✓                  | Cleaning agent A                           | Tank cleaning   | Sodium hydroxide                                   | С                                     | 200 l barrel                  | 1,000 l                          | GL1             |
| 3   | ~                  | Cleaning agent B                           | Cleaning agent  | Sodium hydroxide<br>Potassium<br>hydroxide         | С                                     | 200 l barrel                  | 400 I                            | GL1             |
| 4   | ~                  | Peracetic acid<br>product Divosan<br>forte | Disinfectant    | Peracetic acid<br>Hydrogen peroxide<br>Acetic acid | 0, C                                  | 25 I<br>canister              | 100 I                            | GL1             |
| 5   | ~                  | Disinfectant A                             | Disinfectant    | Bromacetic acid<br>Phosphoric acid                 | с                                     | 200 l barrel                  | 400 I                            | GL1             |
| 6   | ~                  | Disinfectant B                             | Disinfectant    | Sodium<br>hypochlorite                             | С                                     | 200 l barrel                  | 400 I                            | GL1             |
| 7   | ~                  | Caustic soda 50%                           | Cleaning agent  | Sodium hydroxide                                   | С                                     | 1 m <sup>3</sup><br>container | 3,000 I                          | GL1             |
| 8   | ~                  | Gleitoklar                                 | Chain lubricant | Isopropanol                                        | Xi                                    | 25 I<br>canister              | 75 I                             | GL1             |

Source : UNIDO CP Toolkit





# Example of implementation of Responsible Production in Romania

### Printing company

- Activities
- Site description
- Process flow
- Chemicals use
- Chemicals inventory
- Identification of hazards
- Hazards spot map

## **Chemical Control Action Plan**

### Measures to:

- Understand the hazard and control chemical risks
- Reduce the use of chemicals and the generation of hazardous waste









**TOGETHER** for a sustainable future

## **Printing process**

#### Offset system



#### Source: Pollution prevention on the printing and allied industries, RAC, 2003



Flexographic system







1966 - 2016

## Main steps in the process



Partnership for Environment and Growth





#### Processes

#### Pre-press

- Image processing
- Color preparation
- Printing preparation

#### Printing process

- Printing execution
- Fix parts cleaning

#### Post press

- Gilding
- Rolling
- Embossing
- Serigraphy
- Bonding
- Stamping
- Cutting

#### Spare parts cleaning

#### Chemicals

- Developer
- Fixer
- Rinse water
- Cleaning solutions
- Pigments, inks

Adhesives

Lacquers

Glues

•

- Fountain solution
- Cleaning solutions

- Chemical waste
- Spent developer
- Spent fixer
- Film rinse water
- Rags containing solvents; plastic containers with waste chemicals
- Spent solvents and solutions
- Mould cleaning liquid
- Rags containing inks and
- solvents
- Metal and plastic containers
- Waste inks
- Spent solvents
- Air emissions
- Waste glue
- Metal and plastic containers







|                        |                          |          |               | 1966 - 2016                 |
|------------------------|--------------------------|----------|---------------|-----------------------------|
| Process step           | Chemical involved        | Quantity | Classificatio | n Hazard                    |
| Pre-press              | Offset plate Solvent     | 400      | F, Xi         | Flammable , Irritating      |
| • Indge processing     | Developer                | 1080     | Xi            | Irritating to eyes and skin |
| Color preparation      | Flexo plate wash         | 400      | F, Xn         | Flammable ; Harmful         |
| • Printing preparation | Flexo plate AUTOWASH     | 215      |               |                             |
| Elevographic printing  |                          |          |               |                             |
|                        | IPA                      | 4200     | F, Xi         | Flammable , Irritating      |
| • Printing execution   | Ink offset               | 8425     | Xi            | Irritating                  |
| • Fix narts cleaning   | Ink flexo                | 876      | -             | -                           |
|                        | Serigraphic Ink          |          | Xi <i>,</i> N | Irritating; Dangerous for   |
|                        |                          | 260      |               | env.;                       |
| Post press             | Additive TENCACID 3030   |          | Xi            | Irritating to eyes and skin |
| • Gliding              |                          |          |               | -                           |
| • Rolling              | Lacquer flexo            | 2643     |               | Flammable, Irritating to    |
| • Embossing            | Vaseline                 | 22       | F, Xi         | eyes and skin               |
| • Serigraphy           | Adhesive                 | 69       | í _           | -                           |
| Bonding                | Adhesive                 |          | _             |                             |
| • Stamping             | AUTOWASH Solution        | 825      | Xn            | Harmful                     |
|                        | ACTIVAL washing solution | n 215    | N, Xi         | Dangerous for env.,         |
| Spare parts cleaning   |                          | 100      | C             | Irritating                  |
|                        |                          |          | -             | Corrosive                   |





| lazards sno          | t man         |                                        | Solvents                      |
|----------------------|---------------|----------------------------------------|-------------------------------|
| 1020103 300          | thap          |                                        | Inks<br>Additive              |
| Chemicals storage    | Ink storage   |                                        | Lacquers<br>Washing solutions |
| Image processing     | Color storage | Printing preparation Color preparation | Gilding                       |
| Image !              | <u></u>       | Color set up Printing execution        | Rolling                       |
| processing           | Ink room      | Fix parts cleaning                     | Embossing                     |
| room                 |               |                                        |                               |
| Plates cleaning      |               |                                        | Production lines –            |
|                      |               | Production lines - printing            | post press                    |
|                      | Hazardous     |                                        | operations                    |
| Spare parts cleaning | waste !       |                                        |                               |
| Spare parts          | storage       | IPA, INK                               |                               |
| cleaning             | room          |                                        | Bonding Serigraphy            |
| room !               | Maintenance   |                                        |                               |
| Chemicals storage    | room          |                                        | Stamping Cutting              |











1966 - 2016

## The Chemical Control Action Plan

#### **Reduction of chemical risks**

- Maintain up to date chemicals inventory
- Improve storage and handling of chemicals
- Implement systematic training of operators
- Replace VOC solvents with water based solutions for spare parts washing

#### **Reduction of chemical input**

- Improve products design and reduce number of unexpected orders
- Optimize ink supply and use
- Acquire software for efficient ink blending

#### Reduction of chemical waste

- Collect separately the chemical waste generated in different processes (IPA, cleaning solvent, developer and fixer solutions, etc.) and record data, compare with input data
- Improve supplying process to avoid expiration, un-necessary chemicals and contaminated packaging
- Implement automatic washing of ink tanks, rubber rollers and other spare parts of printing machines









1966 - 2016 ----

## Progress registered so far



Before

After









## Progress registered so far





UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

WWW.UNIDO.ORG





## Wrap Up – Take Aways

- What ?
- Chemicals are part of our daily life. Their intensive use in production process end operations will increase even more due to current trends
- Chemicals are at the origin of hazardous waste and emissions and represent a major source of pollution and accidents

- Why?
- Chemicals are expensive materials and their efficient use contributes to direct and indirect cost reduction
- Responsible use of chemicals protect employees health and minimize the risk of accidents, securing the business and increasing it's social responsibility









## Wrap-up – Take aways



Improving chemical efficiency, minimizing risk, hazardous waste and emissions requires:

- To **understand**:
  - Chemical use, consumption and cost
  - Chemical risk
  - Types of hazardous waste and emission, volumes and sources generated

## To identify:

- Responsible production issues and actions for risk reduction
- Factors influencing chemical use, hazardous waste generation and emissions
- Relevant stakeholders

To generate and implement measures to improve chemical use, control risk and minimize hazardous waste and emissions









Thank you!



Aida Szilagyi, Chair of NCSPC Madrid 22, Timisoara Romania Email: aidaszilagyi@cnpcd.ro Website: www.cnpcd.ro Tel/fax 0040 256 434397 Mobil: 004 0724528900











- 1966 - 2016 ----









